系统检测到您的浏览器版本过低,无法获得最佳的使用体验,建议您更换其他浏览器或 升级您的浏览器。(使用360浏览器访问请选择极速模式)
关闭
{{settrSelectedText ? settrSelectedText : '更新时间'}}
{{sexSelectedText ? sexSelectedText : '性别'}}
{{ageSelectedText ? ageSelectedText : '年龄'}}
{{settrSelectedText ? settrSelectedText : '更新时间'}}
选择城市
切换城市分站,让我们为您提供更准确的信息

当前选择城市:总站
总站 {{item.sitename}}

碱裂解法质粒提取方法、试剂配制、原理及详细步骤(精)

时间: 2019-04-29 07:46 分类: 药招聘会 来源: [转载]

请用微信扫一扫 浏览量: {{clickNum}}

质粒提取方法及步骤()



质粒提取方法及步骤
碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术可是我收研究生十几年了,几乎毫无例外的是我那些给人感觉什么都知道的优秀学生却对碱法质粒抽提的原理知之甚少追其原因,我想大概是因为分子克隆里面只讲实验操作步骤,而没有对原理进行详细的论述这是导致我的学生误入歧途的主要原因后来我发现其实是整个中国的相关领域的研究生水平都差不多,甚至有很多老师也是这个状态这就不得不让人感到悲哀了
我想这恐怕和我们的文化有点关系中国人崇尚读书,学而优则仕的观念深入人心经常听到的是父母对他们的独苗说,你只要专心读好书就可以了所以这读书的定义就是将教课书上的东西记住,考试的时候能拿高分这就是现代科学没有在中国萌发的根本原因如果中国文化在这一点上不发生变化,那么科学是不能在中国真正扎根的,它只能蜕化成新的八股学生命科学是实验科学,它讲究动手如果实验科学只要看看书就可以了,那我想问有那位神仙看看书就会骑自行车了?或者听听体育老师的讲解就会滑冰了?可是光动手不思考,不就成了一个工匠?一个合格的生命科学研究者,需要在这两方面完善自己一个杰出的科学工作者,是一个熟知科学原理并善于应用的艺术家每个曾经用碱法抽提过质粒的同学,希望你看本文后能有所思考,让中国的未来有希望
为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:

溶液I 50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTApH 8.0

溶液II 0.2 N NaOH / 1% SDS

溶液III 3 M 醋酸钾 / 2 M 醋酸


让我们先来看看溶液I 的作用任何生物化学反应,首先要控制好溶液的pH ,因此用适当浓度的和适当pH 值的Tris-Cl 溶液,是再自然不过的了那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部因此,如果溶液I 中缺了葡萄糖其实对质粒的抽提


本身而言,几乎没有任何影响所以说溶液I 中葡萄糖是可缺的那么EDTA 呢?大家知道EDTA Ca2+Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase 的活性,和抑制微生物生长在溶液I 中加入高达 10 mM EDTA ,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉如果不加EDTA ,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA 会迅速被降解,因为最终溶解质粒的TE 缓冲液中有EDTA 如果哪天你手上正好缺了溶液I ,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB 培养基来悬浮菌体就可以了有一点不能忘的是,菌体一定要悬浮均匀,不能有结块
轮到溶液II 了这是用新鲜的0.4 NNaOH 2%的SDS 等体积混合后使用的要新从浓NaOH 稀释制备0.4N NaOH ,无非是为了保证NaOH 没有吸收空气中的CO2而减弱了碱性很多人不知道其实破细胞的主要是碱,而不是SDS ,所以才叫碱法抽提事实上NaOH 是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer (双层膜)结构向micelle (微囊)结构的相变化所导致用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒如果只用SDS 当然也能抽提得到少量质粒,因为SDS
也是碱性的,只是弱了点而已很多人对NaOH 的作用误以为是为了让基因组DNA 变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA 变性复性的描述所导致有人不禁要问,既然是NaOH 溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA 片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA 也会断裂基因组DNA 的断裂会带来麻烦,后面我再详细说明
每个人都知道,溶液III 加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质最容易产生的误解是,当SDS 碰到酸性后发生的沉淀如果你这样怀疑,往1%SDS 溶液中加如2M 的醋酸溶液看看就知道不是这么回事了大量沉淀的出


现,显然与SDS 的加入有关系如果在溶液II 中不加SDS 会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质既然SDS 不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS 溶液中慢慢加入5 NNaCl ,你会发现SDS 在高盐浓度下是会产生沉淀的因此高浓度的盐导致了SDS 的沉淀但如果你加入的不是NaCl 而是KCl ,你会发现沉淀的量要多的多这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS 是水不溶的,因此发生了沉淀如此看来,溶液III 加入后的沉淀实际上是钾离子置换了SDS 中的钠离子形成了不溶性的PDS ,而高浓度的盐,使得沉淀更完全大家知道SDS 专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS 分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA 也一起被共沉淀了这个过程不难想象,因为基因组DNA 太长了,长长的DNA 自然容易被PDS 给共沉淀了,尽管SDS 并不与DNA 分子结合
那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH ,因为长时间的碱性条件会打断DNA ,所以要中和之基因组DNA 一旦发生断裂,只要是50100 kb大小的片断,就没有办法再被PDS 共沉淀了所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA 混入,琼脂糖电泳可以观察到一条浓浓的总DNA 条带很多人误认为是溶液III 加入后基因组DNA 无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA 分子在中性溶液中都是溶解的NaOH 本来是为了溶解细胞而用的,DNA 分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系溶液III 加入并混合均匀后在冰上放置,目的是为了PDS 沉淀更充分一点
不要以为PDS 沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA ,不然时间一长就会因为混入的DNase 而发生降解这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍酚(Phenol )对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水


饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M 的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收
回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA 沉淀出来这时候如果放到-20,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA 酒精沉淀回收,所以不要过分小心了高浓度的盐会水合大量的水分子,因此DNA 分子之间就容易形成氢键而发生沉淀如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip 将沉淀打碎,就能得到好的样品得到的质粒样品一般用含RNase 50 ug/ml)的TE 缓冲液进行溶解,不然大量未降解的RNA 会干扰电泳结果的
琼脂糖电泳进行鉴定质粒DNA 时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋线性和开环这三条带碱法抽提得到质粒样品中不含线性DNA ,不信的话你用EcoRI 来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA 的位置与这三条带的位置不一样其实这三条带以电泳速度的快慢而排序,分别是超螺旋开环和复制中间体(即没有复制完全的两个质粒连在了一起)如果你不小心在溶液II 加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb 的大肠杆菌基因组DNA 的片断非常偶然的是,有时候抽提到的质粒会有710条带,这是由于特殊的DNA 序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致这里暂不深究
【如何去除 RNA


去除 RNA 相对比较简单,首先是使用 RNase 消化 抽提中或者抽提后 。经过 RNase 消化后,RNA 变得比较小了,其残留对酶切反应几乎没有影响。如果要彻底去除残留得 RNA ,则需要更烦琐的操作。
【如何将质粒与细菌基因组 DNA 分开】
基本上是采用两种办法:一是利用酶/弱去污剂部分裂解细菌,在抽提时只让质粒从细菌中释放出来,而不让基因组 DNA 从细菌中出来,从而将质粒和基因组 DN
A
分开;二是利用 NaOH/SDS 完全裂解细菌,让质粒和细菌基因组 DNA 都从细菌中出来,再利用质粒和基因组 DNA 在变性/复性过程中的不同表现,将质粒与基因组 DNA 分开。
【去除蛋白质及其它杂质】
基本上是与去除细菌基因组同时实现的。但是,依据不同的细菌,不同的培养条件,以及操作时的精细程度等,杂质的残留量会不同。所以,通常需要使用苯酚做更进一步的纯化。
经过上面的处理,沉淀下来的质粒基本上可以用于酶切了。如果要用于更高级的实验,如转染,则需要做进一步的纯化,如 CsCl 超离心。
【关于碱裂解法】
当然,碱裂解法也有缺陷:容易导致不可逆的变性;不适合大质粒的抽提。碱裂解法是很剧烈的方法,质粒在碱性条件下会变性,时间一长,这种变性就成为不可逆的了 电泳时在超螺旋前面一点点,如果有一条带,就是此变性的质粒。 。所以,要降低不可逆的变性,就要控制好碱裂解的时间。 似乎可以做这么一个推理:在碱性条件下,质粒的两条链从一点或者几个点开始分开,随着时间的延长,直到完全分开。理论上讲,完全分开的两条链要很快地配对复性,成功率肯定不可


能是 100%的,而没有完全分开的两条链却完全可能 100% 配对复性。 碱裂解法不适合大质粒的
抽提,原因也是因为该方法太剧烈,使超螺旋比例较低。文献推荐的抽提大质粒的方法是温和得多的方法,缺点是得率要低一些。现在得问题是,大质粒的拷贝数本来就低,如果抽提方法得率再不高的话,抽提起来就很费力了。